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Abstract

Human 3D pose estimation from a single image is a chal-
lenging task with numerous applications. Convolutional
Neural Networks (CNNs) have recently achieved superior
performance on the task of 2D pose estimation from a single
image, by training on images with 2D annotations collected
by crowd sourcing. This suggests that similar success could
be achieved for direct estimation of 3D poses. However, 3D
poses are much harder to annotate, and the lack of suitable
annotated training images hinders attempts towards end-to-
end solutions. To address this issue, we opt to automatically
synthesize training images with ground truth pose annota-
tions. We find that pose space coverage and texture diver-
sity are the key ingredients for the effectiveness of synthetic
training data. We present a fully automatic, scalable ap-
proach that samples the human pose space for guiding the
synthesis procedure and extracts clothing textures from real
images. We demonstrate that CNNs trained with our syn-
thetic images out-perform those trained with real photos on
3D pose estimation tasks.

1. Introduction

Recovering the 3D geometry of objects in an image is
one of the longstanding and most fundamental tasks in com-
puter vision. In this paper, we address a particularly impor-
tant and challenging instance of this task: the estimation of
human 3D pose from a single (monocular) still RGB im-
age of a human subject, which has a multitude of applica-
tions [17, 45, 44, 12].

Most of the existing work in human pose estimation pro-
duces a set of 2D locations corresponding to the joints of
an articulated human skeleton [26, 36]. Additional process-
ing is then required in order to estimate the 3D pose, which
is necessary e.g., for fitting a 3D model to the human sub-
ject[39,4, 13,33, 9, 2]. However, errors are accumulated in
this two-stage 3D pose estimation system. Inspired by the
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Figure 1. Our training data generation pipeline. The 3D pose space
is sampled and the samples are used for deforming SCAPE mod-
els. Meanwhile, various clothes textures are mapped onto the hu-
man models. The deformed textured models are rendered using
a variety of viewpoints and light sources, and finally composited
over real image backgrounds.

recent success of training CNNs in an end-to-end fashion,
one might expect that direct estimation of 3D poses should
be more effective.

In this paper, we directly estimate 3D poses, with a fo-
cus on synthesis of effective training data for boosting the
performance of deep CNN networks. This task of direct 3D
pose estimation is more challenging than the 2D case due to
alarger number of parameters to estimate and due to the am-
biguities that arise when a 3D articulated figure is projected
onto a 2D image plane. Specifically, for 3D pose estima-
tion from monocular images, one needs a large number of
human bodies with different genders and fitness levels, seen
from a wide variety of viewing angles, featuring a diversity
of poses, clothing, and backgrounds.

Therefore, an effective CNN has to be trained by a large
number of training examples, which cover well the huge
space of appearance variations. Obtaining a sufficiently di-
verse training set is a major bottleneck. Crowd-sourcing is
not a practical option here, because manually annotating a
multitude of images with 3D skeletons by human workers is
not a feasible task: the annotations must be marked in 3D,



and, furthermore, it is inherently hard for humans to esti-
mate the depth of each joint given only a single 2D image.
Massive amounts of 3D poses may be captured by Motion
Capture (MoCap) systems, however these systems are not
designed to capture the accompanying appearance, and it
is difficult to achieve the necessary diversity of the training
data.

Recently, synthesized images have been shown to be ef-
fective for training CNNs [38, 25]. These works mostly
target man-made objects, where rigid transformations are
applied to generate pose variation, and very limited work
has been done to address texture variation. In this work,
we also use synthetic images to address the bottleneck of
training data. However, the challenges we face are rather
different and much more difficult. Unlike static man-made
objects, human bodies are non-rigid, richly articulated, and
wear varied clothing. To make CNNs trained on synthe-
sized images effective when applied to real ones, the space
of human body types, poses and the diversity of clothing
textures must be well represented in the synthetic training
set.

To address these issues, we propose to drive the synthe-
sis procedure with real data. We build a statistical model
from a large number of 3D poses from a MoCap system, or
inferred from human annotated 2D poses, from which we
can sample as many body types and poses as needed for
training. We further present an automatic method for trans-
ferring clothing textures from real product images onto a
human body. Without complicated physical simulation as
in traditional cloth modeling [5], this data-driven texture
synthesis approach is highly scalable, but still retains visual
details such as wrinkles and micro-structures. Effectively,
we generate 10,556 human models with unique and qual-
ity textured clothing. Given a sampled (articulated) pose,
we render the textured human body, overlaid on a randomly
chosen background image to generate a synthetic image. In
our experiments we generated 5,099,405 training images.

We argue that our synthetic training set is richer and
more diverse than any of the existing datasets with ground
truth 3D annotations, which results in better performance
in 3D pose estimation. To demonstrate this, we train sev-
eral state-of-the-art CNNs with our synthetic images, and
evaluate their performance on the human 3D pose estima-
tion task using different datasets, observing consistent and
significant improvements over the published state-of-the-art
results. Our synthetic training data and the code to generate
it will be made publicly available.

2. Related Work

Analyzing human bodies in images and videos has been
a research topic for many decades, with particular attention
paid to estimation of human body poses [14, 21]. While
some earlier works were based on local descriptors [27, 10],
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the recent emergence of CNNs has led to significant im-
provements in body pose estimation from a single image.

Human Pose Datasets FLIC [34], MPI [3], and LSP [19,
20] are the largest available datasets. FLIC has 5003 anno-
tated human bodies, MPI has 2179 fully-marked annotated
human bodies, and LSP has 2000 annotated human bodies.
Generally speaking, CNNs, even those trained for object
classification tasks, can extract high quality image descrip-
tors, which can then be adapted for various other recogni-
tion tasks. However, fine-tuning a CNN for a specific task,
such as pose estimation, still requires a large number of an-
notated images. Existing datasets listed above are still too
limited in scale and diversity.

CNN-based 2D Pose Estimation Toshev and
Szegedy [41] proposed a cascade of CNN-based re-
gressors for predicting 2D joints in a coarse to fine manner.
Both Fan et al. [8] and Li et al. [24] proposed to combine
body-part detection and 2D joints localization tasks.
Gkioxari et al. [11] also explored a multi-task CNN, where
an action classifier is combined with a 2D joints detector.
Both Tompson et al. [40] and Chen and Yuille [6] proposed
to represent the spatial relationships between joints by
graphical models, while training a CNN for predicting 2D
joint positions. Jain et al. [18] extended FLIC to FLIC-
motion by adding optical flow between FLIC frames, and
proposed a CNN that takes pairs of images together with
the motion features between them as input for predicting
human pose from videos.

3D Pose Estimation Since all of the above methods es-
timate 2D poses, several methods have been proposed for
recovering 3D joints from their 2D locations [39, 33, 9, 2].
However, such methods operate only the 2D joint locations,
ignoring all other information in the input image, which
might contain important cues for inferring the 3D pose.
CNN solutions are likely to work better, since they are ca-
pable of taking advantage of additional information in the
image. We found that CNNs trained with our synthetic im-
ages outperform 2D-pose-to-3D-pose methods, even when
the latter are provided with the ground truth 2D joint lo-
cations, not to mention when they start from automatically
estimated 2D poses.

Li and Chan [23] proposed a multi-task CNN for jointly
detecting the body parts and regressing the poses, trained
using the Human3.6M dataset [15, 16], where the ground
truth 3D poses were captured by a MoCap system. Their
method achieves high performance on subjects from the
same dataset that were put aside as test data. However, we
found that the performance of their CNN drops significantly
when tested on other datasets, which indicates a strong over-
fit on the Human3.6M dataset. The reason for this may be



that while there are millions of frames and 3D poses in this
dataset, their variety is rather limited.

Human Pose Data Synthesis Several recent works syn-
thesize human body images from 3D models for training
algorithms. However, these works are limited in scalabil-
ity, pose variation or viewpoint variation. Both Pishchulin
et al. [31] and Zhou et al. [45] fit 3D models to images, and
deform the model to synthesize new images. However, they
either request user to supply a good 3D skeleton and seg-
mentation, or need considerable user interaction. Vazquez
et al. [42] collect synthesized images with annotations from
game engines, thus it is restricted to certain scenes and peo-
ple. Park et al. [30] use layering to reconstruct images with
different pose, leading to imprecise and poor resolution syn-
thetic images. Since none of the above methods can gener-
ate large-scale training images, they can hardly satisfy the
demand of CNNs.

Other methods exist that recover 3D pose by adding ex-
tra information beside 2D annotations. Agarwal et al. [1]
predict 3D pose from silhouette. Radwan et al. [32] use
both kinematic and orientation constraints to estimate self-
occlusion 3D pose. However, the additional constraints may
also introduce error and decrease the reliability of the full
system.

3. Synthesis of Training Data

Training effective CNNs for 3D pose estimation requires
a large number of 3D-annotated images. There are an in-
finite number of possible combinations of viewing angles,
human poses, clothing articles, and backgrounds; thus, a
brute-force synthesis approach can generate literally an in-
finite number of unique training images with human 3D
pose annotations by blindly combining the above proper-
ties. Clearly, such a brute-force approach will not work, as
only a tiny fraction of the synthesized images will resemble
real images of humans, which the trained CNN is supposed
to work on.

Thus, the generated combinations should be chosen such
that (i) the result resembles a real image of a human (we
refer to this as the alignment principle; and (ii) the synthe-
sized images should be diverse enough to sample well the
space of real images of humans (the variation principle).
Below we describe our synthesis process, which attempts to
comply with both of these principles.

Our training data generation approach is illustrated in
Figure 1, which consists of sampling the pose space, as de-
scribed in Section 3.1, and using the results to generate a
large collection of articulated 3D human models of differ-
ent body types with SCAPE [4]. The models are textured
with realistic clothing textures extracted from real images,
as described in Section 3.2. A sample of synthesized 3D
human models in various body types, clothes and poses is
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Figure 2. A sample of poses drawn from the learned non-
parametric Bayesian network and t-SNE 2D visualization of the
high dimensional pose space. Note that the 3D poses inferred from
human annotated 2D poses (red) are complementary to MoCap 3D
poses (green). New poses (blue) can be sampled from the prior
learned from both the MoCap and inferred 3D poses, and have
better coverage of the pose space.

shown in Figure 5. Finally, the textured models are rendered
and composited over real image backgrounds (Section 3.3).

3.1. Body Pose Space Modelling

Faithful modeling of pose space is essential for our task.
The pose distribution of the synthetic images should agree
with that of real-world images. It is not practical to design
a parametric model for generating poses that conform to the
distribution of valid poses. In case there are enough poses
available that cover the entire pose space, we can keep sam-
pling poses from this pool, and select a large number of
poses whose distribution approximates that of real images
well. Unfortunately, we found the poses from the exist-
ing datasets only sparsely cover a small portion of the pose
space. The existing datasets, e.g. CMU MoCap dataset [7]
and Human3.6M [16], are classified by different actions.
Even though they cover many common human actions, they
can hardly represent the entire pose space. If we simply
sample poses from existing MoCap datasets, a large portion
of the pose space will not be covered, leaving “holes” in the
pose space. CNNs trained with such training data would
not perform as well for real images containing poses that
happen to fall into these “holes”.

To better cover the pose space, unseen poses should also
be generated, rather than only repeating poses from a pose
pool. The key challenge is to make sure the generated un-
seen poses are valid. The idea is to learn the variations
of parts that frequently occur together and produce new
poses by combining these parts. We learn a sparse and non-
parametric Bayesian network from a set of input poses, to
factorize the pose representation, and then composite sub-
structures for generating new poses, as proposed in [22].
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Figure 3. A sample of clothing images used for transferring texture
onto 3D human models. They are from Google Image Search.

Pose samples drawn from the learned Bayesian network
exhibit richer variations due to the substructure composi-
tion; meanwhile, the poses stay valid as substructures are
composited only when appropriate. Note that the degree to
which the substructures may be composited is captured by
the network and learned from input poses as well. Please
refer to [22] and the supplementary material for more de-
tail.

We learn the Bayesian network from both MoCap 3D
poses and 3D poses inferred from human annotated 2D
poses. There are two large MoCap datasets which contain
a large variety of 3D poses: CMU MoCap dataset [7] and
Human3.6M [16]. We use the CMU MoCap dataset be-
cause it contains more types of actions. The MoCap 3D
poses are captured in highly controlled settings with limited
number of performers and organized by different actions,
which limits the variability of the poses. In contrast, images
are taken in much less controlled settings with ubiquitous
devices, depicting more people performing a much wider
range of activities. Moreover, human 2D pose annotations
for images can be obtained from affordable crowd sourcing
approaches. Though the 3D pose inferred from these 2D
poses might not be accurate, they are more scalable than
the MoCap approach, and thus an important source for 3D
poses. We use LSP [19, 20] as a 2D pose source because
it contains different sports actions, which are more diverse
in pose. We use Akhter et al. [2] to recover 3D poses from
2D annotations. The complementary nature of MoCap 3D
poses and inferred 3D poses is demonstrated in Figure 2.

Note that the poses sampled from the learned Bayesian
network cover the input MoCap and inferred 3D poses well.
Moreover, since the prior is learned from both the MoCap
and inferred 3D poses, the “interpolation” between the Mo-
Cap and inferred poses can be sampled from the learned
Bayesian network as well, due to the compositionality.

Each sample of the pose space yields a set of 3D joints.
The 3D joints, together with other parameters, such as gen-
der and fitness level, are provided as input to SCAPE [4]
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Figure 4. Contour matching for clothing texture transfer. We ren-
der 3D human models in a few candidate poses (a), and try to
match their contour to those in real clothing images (b). Next, tex-
tures from real images are warped according to the best contour
matching (c,d,e) and projected onto the corresponding 3D model.
Finally, the textures are mirrored (left-right as well as front-back)
to cover the entire 3D model (f). Note that the winkles on clothes
of the 3D body are transferred from product images and are still
relatively natural.

for yielding richly varied articulated human models. The
fitness levels are supplied based on an empirical distribu-
tion, though a distribution learnt from real data might be
even better.

3.2. Clothing Texture Transfer

Humans wear a wide variety of clothing. In the real
world, clothes are designed for a variety of purposes, may
be made of various materials, and exhibit many different
colors and textures, resulting in a wide diversity of appear-
ances. Our goal is to synthesize clothed humans whose ap-
pearance mimics that seen in real images. However, it is
hard to design or learn a parametric model for generating
suitable textures. Instead, we propose a fully automatic ap-
proach that transfers large amount of clothes textures from
images onto human 3D models.

Realistic textures can be easily transferred from an im-
age onto a 3D model, if the model is properly aligned with
the corresponding object in the image. However, in general
human images, it is extremely hard to find the matching be-
tween the clothes and the 3D human model, because clothes
are deformed according to the pose of the person who wears
it. Even worse, there might be significant foreground occlu-
sion and background clutter. Fortunately, there are many
product images of clothes available online, in which clothes
are often imaged in canonical poses with little or no fore-
ground occlusion or background clutter (see Figure 3). Our
approach is to collect and analyze such images, and then use
them to transfer realistic clothing textures onto our 3D hu-
man models. The transfer is done by establishing a match-
ing between the contour of the clothing article in the image
and the corresponding part of a rendered human model (see
Figure 4).

Firstly, we collect a large set of images of sportswear of



various styles using Google and Bing image search. Next,
we apply the method of Wang et al. [43] for extracting the
foreground clothing from these images, resulting in 2,000
segmented images (1,000 for upper body and 1,000 for
lower body). Correspondingly, we split a 3D human model
into overlapping upper and lower parts for matching. These
two parts are projected onto the clothing images, where
they are matched to the clothes. We use continuous dy-
namic time warping [28] for computing the dense corre-
spondences M (p) between the contours of the two human
body parts P = {p;} and those of the imaged clothing arti-
cles @ = {¢; }:

M = argmin {Z dist(p, M (p))}. (1)

M:P—Q P

Once the dense correspondences between the contours
are available, we warp the image of the article to fit the pro-
jected contour, and the warped image is then used to define
the texture for the corresponding portion of the 3D human
model. We want the warping to be smooth for minimiz-
ing artifacts, and we achieve this by applying MLS image
deformation [35]. The resulting textures on the 3D model
are mirrored both left-right and front-back for better model
coverage.

Since we now have textures for overlapping upper and
lower body parts, we can increase the diversity of the cloth-
ing textures by randomly adjusting the seam between the
textures assigned to the upper and the lower parts. We place
6—12 control points of the seam in the overlapping region,
whose vertical positions are randomly adjusted, such that
variation is added to the seam between upper and lower
body wear.

We found that the clothing images can be matched better,
and result in less deformation when the 3D human model is
provided in multiple candidate poses, and we pick the pose
that results in minimal deformation:

> dist(p, M(p)),

M:C(I)iC(RA) pec(I)

@)

minimize

where C(I) is the contour of clothing image I, A is the pose
of 3D human body and C(R ) is the contour of the render-
ing R4 of the 3D human model at pose A. In practice, we
picked three upper body candidate poses. Note that rather
than pursuing realistic clothing effect, we try to generate
human 3D models of high diversity to prevent CNNs from
picking up unreliable patterns.

Note that manual texture mapping is an extremely te-
dious task. We conducted an informal user study among 20
professional CG artists, each of whom was asked to texture
map 20 clothing articles onto a human 3D model. It took
about 1.5 hour for an artist to texture map one clothing ar-
ticle, on average. Although we found the results of manual

4325

RIARSAT R

Figure 5. A sample of synthesized 3D human models. Our pose
variation is large. Also note that wrinkles and micro-structures are
present in these renderings. Besides clothes texture and pose, 3D
human model exhibits rich variations in shape due to gender and
fitness levels. Such factors are taken into consideration in the 3D
human model generation process for enriching the variations.

texture mapping by the artists to be of higher quality, this
approach does not scale up due to its labor intensiveness.
Our automatic clothing texture transfer method, produces
results of somewhat lower quality, but it scales up well.

The head, feet, and hands, which may not be covered
by clothes, are texture mapped with a small set of head,
shoes and skin textures. Their colors are further perturbed
by blending to generate more variations before clothing tex-
tures are transferred onto the models. Since the area of these
regions is relatively small, their appearance is less important
than the clothes, thus we opt for this simple strategy that is
also scalable.

3.3. Rendering and Composition

Finally, textured human models in various poses are
ready to be rendered and composited into synthetic images
for CNN training. Three factors are important in the ren-
dering process: camera viewpoint, lighting, and materials.
The camera viewpoint is specified with three parameters:
elevation, azimuth, and in-plane rotation. Typically, per-
turbations are added to the in-plane rotation parameter, by
rotating the training images, to augment and generate more
training data. Perturbations can also be added to the ele-
vation and azimuth parameters. Starting from the camera
viewpoint associated with each 3D pose, we add Gaussian
perturbations with standard deviations of 15, 45, and 15 de-
grees to the elevation, azimuth and in-plane rotation param-
eters, respectively. Various lighting models, number and
energy of light sources are used during the rendering. The
color tone of the body skin is also perturbed to represent
different types of skin colors. Each rendered image is com-
posited over a randomly chosen sports background image.
We collected 796 natural images to serve as background.
They were collected manually from image repositories and
search engines. As shown in Figure 6, the synthetic im-
ages exhibit a wide variety of clothing textures, as well as
poses, and present comparable complexity to real images,
even though a human observer can easily identify them as
synthetic.



Figure 6. A sample of synthetic training images (3 top rows) and
real testing images (bottom row). The synthetic images may look
fake to a human, but exhibit a rich diversity of poses and appear-
ance for pushing CNNS to learn better.

4. Results and Discussion

We first introduce the datasets for evaluating 3D pose
estimation in Section 4.1. Then we demonstrate the effec-
tiveness of our synthetic training data in 3D pose estimation
task by feeding it into a number of different CNNs in Sec-
tion 4.2. We study the performance of our synthetic datasets
with some additional experiments in Section 4.3.

4.1. Evaluation Datasets

The lack of images with 3D pose annotations is not only
posing a problem for training, but also for evaluating 3D
pose estimation methods. Existing datasets with 3D pose
annotations, such as Human3.6M [16] and HumanEva [37],
have been captured in controlled indoor scenes, and are not
as rich in their variability (clothing, lighting, background)
as real-world images of humans.

Thus, we have created Human3D+, a new richer dataset
of images with 3D annotation, captured in both indoor and
outdoor scenes such as room, playground, and park, and
containing general actions such as walking, running, play-
ing football, and so on. The dataset consists of 1,574 im-
ages, captured with Perception Neuron MoCap system by
Noitom Ltd. [29]. These images are richer in appearance
and background, better representing human images in real-
world scenarios, and thus are better suited for evaluating 3D
pose estimation methods'. See our supplementary material
for a sample of the images from our evaluation dataset.

4.2. Evaluations on 3D Pose Estimation Task

The method proposed by Li and Chan [23] is the state-
of-the-art in human 3D pose estimation from 2D images.
They design a network which combines detection and pose
estimation in one model, which is less deep than AlexNet
and VGG. Their CNN model is directly trained, rather than
fine-tuned, on the Human3.6M dataset, and evaluated on

I'The sensors mounting strips are artificial, but necessary for accurate
capturing. However, since such strips do not appear in Human3.6M or in
our synthetic images, it is not harmful for the comparison fairness.
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Figure 7. 3D pose estimation evaluated on Human3.6M (left) and
our Human3D+ (right). Various deep learning models (Li and
Chan [23], AlexNet and VGG) trained on our data, Human3.6M,
or a mixture of them are evaluated. We also compare against
the 3D pose estimation methods of Ramakrishna et al. [33] and
Akhter et al. [2] which reconstruct a 3D pose from 2D joint loca-
tions (left). To compare the generalizability of models trained on
Human3.6M and our synthetic data, we evaluate these networks
on a new dataset — Human3D+ (right). We observe that models
trained by our synthetic data perform significantly better, i.e., our
synthetic data faciliates the training of networks with better gener-
alizability, compared against Human3.6M real data.

the same dataset. They train six models corresponding to
six actions. The authors kindly provided us all their models
trained on Human3.6M.

Since the focus of this paper is on the generation of the
training data, and it is not our intention to advocate a new
network architecture for pose estimation, we test the effec-
tiveness of our data using “off-the-shelf” image classifica-
tion CNNs. Specifically, we adapt both AlexNet and VGG
for the task of human 3D pose estimation by modifying the
last fully connected layer to output the 3D coordinates, ap-
pended with an Euclidean loss, and fine-tuning all the fully
connected layers to adapt them to the new task.

More specifically, our synthesis process outputs a large
set of images {Z;}, each associated with a vector P; € R*:
the 15 ground truth 3D joint positions (in camera coordi-
nates). The vector P; defines the relative spatial relation-
ships between the 3D joints (the human 3D pose), and also
the camera viewpoint direction relative to a canonical hu-
man coordinate system (e.g, from which side of the human
the camera is looking at it). We normalize the joint coor-
dinates such that the sum of skeleton lengths is equal to a
constant. We train the CNNss to estimate the 3D pose from
a single input image. That is, given an image with a full hu-
man subject visible in it, the CNN yields 3D joint positions
in camera coordinates. We denote the joint predictions as
P, € R*. We measure the prediction error with an Eu-
clidean loss: E =3, || Pi — P; [|,.

We compare the perofrmance of our simple adaptions of
AlexNet and VGG with Li and Chan [23]. As aforemen-
tioned, Li and Chan train six models on different actions.
We test all the testing images by their six models, and se-
lect the best one. Both our adaptions and Li and Chan out-
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Figure 8. 3D pose estimation performance increases with the size
of the synthetic training set (left), and the number of different
clothes textures used (right).

put poses that are given in camera view. We first normal-
ize and align the estimated 3D poses towards the ground
truth, and then compare the results by plotting the percent-
age of detected joint points when different error thresholds
are used against the ground truth annotations. Note that the
normalization and alignment is fair as it does not change
the relative spatial relationships between the 3D joints — it
only means to bring the output from different methods into
a comparable format.

We train these three networks (VGG, AlexNet, and Li
and Chan) on three training image datasets (our synthetic
images, Human3.6M, and their mixture), and evaluate their
performance on two evaluation datasets (Human3.6M and
Human3D+). The performance of these variants is plotted
in Figure 7.

Several interesting observations can be made from the
comparisons in Figure 7. First, training on Human3.6M
leads to over-fitting. While the models trained on Hu-
man3.6M apparently perform comparably or better than
those trained on our synthetic images, when tested on Hu-
man3.6M (Figure 7 left), they perform less well when tested
on Human3D+ (Figure 7 right), which is more varied than
Human3.6M. Another evidence of the over-fitting is that
VGG, which is generally considered to have larger learn-
ing capability than AlexNet, performs worse than AlexNet
when trained on Human3.6M and tested on it (Figure 7 left),
since it suffers from stronger over-fitting due to its larger
learning capability. Second, it is clear that training with
our synthetic data, rather than Human3.6M, leads to better
performance on Human3D+ images, which exhibit richer
variations (Figure 7 right). This shows a clear advantage
of our synthetic images. Third, our synthetic images, when
combined together with Human3.6M in the training, consis-
tently improve the performance on both Human3.6M. This
is an indication that our synthetic images and real images
have complementary characteristics for the training of CNN
models. We suspect our synthetic images cover larger pose
space and texture variations, while Human3.6M images still
have some characteristics, e.g. the realism, that are closer
to real images than our synthetic images.

To get a better reference of the performance, we also
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Figure 9. Performance of various models evaluated on our syn-
thetic data.

compare against the methods of Ramakrishna et al. [33] and
Akhter et al. [2] which reconstruct a 3D pose from 2D joint
locations. We found these methods to perform significantly
worse, even when provided with the ground truth 2D poses
(Figure 7 left)?. This is not suprising, as these methods take
only the 2D joint positions as input, while ignoring the ap-
pearance. In contrast, CNN models effectively consume all
the information in the input images.

4.3. Parameter Analysis

Importance of scalability. To investigate how important
the number of synthetic images is for the 3D pose estima-
tion performance, we train the same models using different
synthetic training set sizes and report their performance in
Figure 8 (left). It is clear that increasing the number of syn-
thetic images improves the performance of CNN models.

Importance of texture variability. Similarly, we also
study the impact of the number of different clothes tex-
tures used for “dressing” the human 3D models in Figure 8
(right). Note that the richness of the clothes textures also
plays important role in the overall performance, thus it is
critical for the texturing steps to be as automatic as possi-
ble. In our case, only a modest amount of user input is re-
quired in the clothes images collection step, which actually
can be further automated by collecting images from online
clothing shops, or by a classifier trained for this task.

2Due to the technical limitation of [29], the ground truth 2D poses are
not available in Human3D+, thus this experiment could not be done on
Human3D+.



The

Figure 10. 3D human reconstruction from single image.
SCAPE model in rest pose (a), can be articulated to (b) according
to the pose estimated from the image (d). The rigid transformation
between (b) and (d) can be computed from corresponding joints
to align (b) to the human in the image (c). The reconstruction is
visualized in (e).

Evaluation on synthetic images. To better understand
the influence of our data for networks’ generalizability, we
test the various deep learning models on our synthetic data.
The results are summarized in Figure 9. We see that the per-
formance gap between models trained on real images (cyan)
and on our synthetic images (green) is much more notable
than in Figure 7. It implies that, when the test data and
the training data are from different sources, models trained
on Human3.6M perform worse than those trained on our
synthetic data. This asymmetry in the gaps is also another
indication that our synthetic images have more variations
than that in Human3.6M — data with less variation is more
likely to result in a model that performs well on itself but
bad on new data.

4.4. 3D Reconstruction

Human 3D pose estimation from a single image is an im-
portant step towards human 3D reconstruction from a sin-
gle image. The estimated 3D pose can be used to articulate a
SCAPE model, as well as align it to the human in the image.
The articulated aligned model can already serve as a feasi-
ble 3D reconstruction, as shown in Figure 10, and more in
Figure 11.

However, more faithful 3D reconstruction requires re-
covering additional 3D properties from the input image. As
shown in Figure 10 (f) and (g), body shape and gaze also
play important roles. Similarly to pose, such 3D properties
can be hard to annotate, but come free from the synthesis
pipeline. We believe our work will encourage more research
along these directions.
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Figure 11. A sample of 3D human reconstruction from single im-
age results, based on a 3D pose estimation model train on our syn-
thetic images.

5. Future Work and Conclusions

Training data for inferring 3D human pose is costly to
collect. In our system to synthesize training images from
3D models, the association between the images and the 3D
ground truth data is available for free. We found the rich-
ness of the clothing textures and the distribution of the poses
to be of particular importance. However, constructing a
model for realistic clothing synthesis from scratch is a diffi-
cult challenge in itself, so we propose instead to sidestep
this challenge by transferring clothing textures from real
images. We show that the CNNs trained on our synthetic
data advance the state-of-the-art performance in the 3D hu-
man pose estimation task. We plan to make all of our data
and software publicly available to encourage and stimulate
further research.
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